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1 Institute of Physics, Eötvös University, H-1117 Budapest, Hungary
2 Department of Physics and Process Control, Szent István University, H-2103 Gödöllő, Hungary
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Abstract
The most important symmetry properties of the incommensurately modulated
crystal structures are investigated by use of exact symmetry theory of quasi-one-
dimensional systems in the framework of group theory. It is shown that typical
characteristic formulae developed for the description of scattering cross sections
of one-dimensionally modulated crystals can be directly derived by the line-
group technique. A symmetry analysis of static soliton structures is performed,
representing a new method for the investigation of elementary excitations of
crystals modulated incommensurately. It leads to the description of symmetry
breaking, to the selection rules and hints at the similarity of symmetry behaviour
of static and dynamic solitons. The actual formulae for Debye–Waller factors in
the case of incommensurately modulated crystals are calculated and tabulated
by using generating elements of the line groups concerned.

1. Introduction: aim and scope of line-group theory

Crystals with non-standard structure can also scatter x-rays and neutrons coherently. In an
early theory, Dzyaloshinskii (1964, 1965a, b) showed that the classical crystal symmetry
description established by Shönfliess, Fedorov and Shubnikov (SFS) cannot reflect the structure
of incommensurately modulated crystals. Thus, the rapidly accumulating experimental data
on modulated crystals in different areas of solid-state physics (Cummins 1990) led to the
elaboration of new mathematical methods for characterization of such crystalline materials
based on the superspace method (de Wolff 1974, 1977, de Wolff et al 1981), and on the
application of cohomology groups (Mermin 1992). Methods of both types have been used
successfully to describe some symmetry features of quasicrystals. As has been pointed
out for the cases of systems with non-collinear magnetic structure and of commensurate
and incommensurate modulations (Kirschner et al 1997, 1998), another well-elaborated
mathematical method, namely the line-group formalism, significantly extends and improves the
efficiency of the investigation of different areas of condensed matter physics. The description
of modulated crystals used in the investigation of chaotic behaviour of the anisotropic Ising
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model with competing interactions, realized by Bak (1981), results in the thermodynamic
average for spins Mi at a given site coordinate, i, of a crystal lattice being given by

Mi = A cos

(
ϕi +

2π i

4

) (
ϕi = π

2
q̄i

)
(1.1)

whereA denotes the amplitude and the quantity q̄ determines the possible values of the discrete
phaseϕi describing the modulation. A simple relation between the wave vector �̄q corresponding
to the commensurate phase and �q relating to the modulation is obtained as

q = π

2
(1 + q̄)

(whenever the vector symbols are not indicated, it is assumed that the relevant vectors are factors
in scalar products). This concept has been applied to the examination of incommensurate
structures and their chaotic behaviour within the framework of the mean-field approximation
(MFA) and with the help of fluctuation theory of phase transitions (Hornreich et al 1975,
Cowley and Bruce 1978, Bruce and Cowley 1978). According to these studies, the phase
transition, which results in modulated crystals, shows critical behaviour characterized by
two critical indices, relating to the commensurate and incommensurate phases, respectively.
Recent research into the fundamental structural properties of high-temperature superconductors
(HTSs) by the neutron diffraction technique (Mook and Doǧan 1999, Mook et al 2000, Dai
et al 2000) demonstrates the existence of Q1D subsystems, namely stripes of charge in these
materials, which play a significant role in the HTS mechanism (Zaanen 2000). This observation
emphasizes the wide applicability of line-group methods, which is confirmed by the results of
Damnjanović et al (1999a, b) obtained on the symmetry properties of carbon nanotubes.

As has been explained by Hermann (1929) and Vujičić et al (1977), the geometrical
symmetries of a system, periodic in one direction, always form a line group. Since symmetry
transformations of non-crystallographic character are also allowed in this theory (e.g. with
screw axes of rational order), it is obvious that there are infinitely many line groups, which can
be classified into 13 families (Vujičić et al 1977). Introduction of the time-reversal symmetry
leads to families of coloured symmetry groups of Q1D systems (i.e. the magnetic line groups
(Damnjanović and Vujičić 1982)) similarly to in the SFS theory of the ordinary magnetic
groups of ideal 3D crystals. For analysis of genuine physical systems, it is necessary to have
the irreducible representations (irreps) of line groups, which can be derived by an induction
technique applied to Q1D systems (Milošević and Damnjanović 1993, Kirschner et al 1997,
1998). Irreps of a full line group L obtained by this procedure and written symbolically as
D(µ)(L) = D(ν)(P ) ↑ L are obtained from the irreps of self-symmetry point groups P of the
motifs and monomers in the case of polymers (unit cells or certain parts of them in the case of
crystals). The discrete translations permitted in the line-group theory are directly coupled with
the orthogonal symmetry transformations of motifs, which is a unique feature of the line-group
formalism (Damnjanović and Vujičić 1982).

2. Laying the foundation for this investigation

The aim of our paper is to contribute to the exact theory of Q1D systems by using the line-
group method. For this reason, our actual task is to perform symmetry analysis of static soliton
structures and elementary excitations, which appear in crystals modulated incommensurately.
The basis of this work is provided by our earlier investigations. One of them was devoted to
studying the translational symmetry of modulated crystals (Mészáros and Bánkuti 1994). In
that paper, the appropriate line groups were determined to characterize the actual symmetry
groups belonging to given materials and the structure factors of stereoregular polymers were
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extended to modulated systems. Another investigation dealt with the oxygen ordering in high-
Tc superconductors (Mészáros et al 1997). Four possible superstructures, L(4̄)/2c, L(4̄)/2m,
L2/mmm and L2/mcc, were found for the oxygen symmetry in Y1Ba2Cu3O7−δ compounds
by the line-group method. This provides the possibility of directly comparing the experimental
and theoretical diffuse x-ray scattering intensity profiles; an excellent agreement between them
is found.

In a later paper we proposed line groups for describing the symmetry properties of systems
with non-collinear magnetic structure (Kirschner et al 1997). In that work, a general method
was elaborated for obtaining the irreps of the symmetry groups of modulated crystals by using
those of the line groups. Applying the results obtained on the magnetic superstructure of
MnAu2-type compounds, the Dzyaloshinskii invariant was shown to be the most general one
for the symmetry properties investigated.

It was also demonstrated that the line-group formalism is suitable for describing both
commensurate and incommensurate modulations (Kirschner et al 1998). Symmetry groups of
modulated crystal lattices were completely characterized by symmetry transformations exist-
ing in real space, without application of the formalism based on reciprocal space. As typical
examples of the method elaborated, the fundamental invariance and symmetry properties
of spin-density functions and soliton lattices were determined in the paper by Kirschner
et al (1998).

In order to build up a general symmetry theory, that characterizes ideal, modulated and
incommensurately modulated crystals in real space (Kirschner et al 1998), we have started
from a very general formalism of

G = S ⊗ L (2.1)

which means that a space group G can always be created as a direct product of a plane group
S and a line group L, where the line group represents the regular arrangements of identical
motifs in a given direction.

On the basis of the considerations mentioned above, two demonstration examples are
examined, as follows:

(i) Low-dimensional conductors. Since the scattering methods play a crucial role in the
experimental investigation of low-dimensional conductors (Pouget 1994), these chain-like
systems are found among anisotropic materials, where the elementary ‘parallel’ repeating
distance in the chain direction (dpar ) is smaller than the elementary repeating distance in
the perpendicular interchain directions (dper ). The 1D metals are unstable at 0 K against
a periodic lattice distortion, which results in a modulation of the intrachain electronic
density, too (Peierls 1955). The amplitude of the (e.g. x-ray) beam, diffracted by chains
possessing elementary structural units that are rigidly displaced along the main axis of the
chain by the distance u = u2kF sin(2kFndpar + ϕ), has the form

A(�κ) =
∑
n

fn(�κ) exp{iκ[ndpar + u2kF sin(2kFndpar + ϕ)]} (2.2)

where kF denotes the wave vector separating occupied electron states from the empty ones
and �κ is the elastic scattering vector. It can be rewritten as

A(�κ) =
∑
n

∑
ν

fn(�κ)Jν(κuF ) exp{i[(κ + 2νkF )ndpar + ϕ]} (2.3)

with the help of Bessel-function expansion of its exponential factor. Therefore, the
expression for the structure amplitude for low-dimensional conductors is formally identical
to the general formula for the structure factor used for description of the elastic scattering
of x-rays in the case of stereoregular polymers (Vainshtein 1966), because the periodically
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and rigidly repeated structural units of the low-dimensional conductor play the same role
as the monomers in the case of such polymers. The formal identity of structure factors is
a manifestation of a deep analogy from the point of view of symmetry between systems
consisting of bundles of long, straight stereoregular polymer chains and crystals with
modulated structure, as is demonstrated in this case.

(ii) An example from N -dimensional crystallography. During the structural investigation of
the modulated biphenyl crystal (Baudour and Sanquer 1983), the tool of N -dimensional
crystallography was applied for the determination and refinement of its structure. It
contains long molecular axes, around which an elementary torsion of about 11◦ appears
coupled with a fractional translation of 0.035 Å. Since the coupling of translational and
orthogonal symmetry operators is the most general property of line groups, the Seitz
operators, which generate the subgroups of generalized translations of line groups, are
exactly such symmetry operators, in which the rotations or mirror operations are directly
coupled to fractional translations. In this case the structure factor in four-dimensional
space can be written in the form

F(h1, h2, h3,m) =
∑
n

fne2π i(h1x̄
µ

1 +h2 x̄
µ

1 +h3x̄
µ

3 )

∫ 1

0
dτ e2π i

∑3
j=1(hi+mki)u

µ

i (τ )+mτ (2.4)

where x̄µi and uµi denote the average coordinates of undisplaced atoms in the basic unit cell
and atomic displacements realizing the modulation, respectively. Taking the particular
equation of the modulating atomic displacement field in the form of a sinusoidal function
(i.e. let it be uµi = U

µ

i sin(2πτ − α)), the integral in (2.4) is transformed into∫ 1

0
dτ e2π i

∑3
j=1(hi+mki)u

µ

i (τ )+mτ = eim(α+π)Jm

∣∣∣∣2π
3∑

i=1

(hi + mki)U
µ

i

∣∣∣∣ (2.5)

where Jm is the Bessel function of orderm. The formula (2.4) for the structure amplitude is
identical to that introduced for the description of modulated crystal structures by the line-
group method (Mészáros and Bánkuti 1994). Within this theory we have proposed and
used (Mészáros and Bánkuti 1994, Kirschner et al 1998) the following general functional:

Fmod(�κ) = F{fmod(�r) ∗ ρ(�r)} = F{fmod(�r)}F(�κ) (2.6)

to describe the structure factor of modulated systems, where ∗ denotes the convolution
operation, ρ(�r) is the electron-density function of an ideal crystal and fmod(�r) is a
line-group-invariant function realizing modulation. This is a functional of very general
character and naturally contains the earlier-obtained particular formulae for structure
factors of modulated systems. This equivalency can be directly seen from (2.6) and
(2.4) rewritten using (2.5) in the form

Fl

(
R,-,

l

c′

)
=

∑
j

fje2π ilzj /c′ ∑
n

Jn(2πrjR)e
i[n(α+π)]

(
α ≡ - − -j − π

2

)
.

(2.7)

In (2.7) the coordinates (R,-, l) and (rj , -j , zj ) denote the cylindrical coordinates
in reciprocal space and those of the x-ray scattering centres inside the motif in real
space, respectively. We use the symbol c′ as the elementary translation along the
main axis, represented by a line group, instead of c, the elementary translation along
the modulation parallel to the crystallographic direction, because these two lengths are
generally incommensurate.
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3. Investigation of Q1D symmetry properties of soliton structures

In order to demonstrate the line-group invariance of the simplest static soliton structure, we
apply the elementary symmetry operator of the subgroup of generalized translations of a line
group to the relevant phase function, which represents a new method for the description of
different types of modulation. Starting from the MFA of the theory of phase transitions,
modulated crystals may appear if the relevant expression for the thermodynamic potential
contains derivatives of the order parameter components (in the form of Lifshitz invariants).
One such expression is the following power expansion of a thermodynamic potential that
corresponds to phase transitions governed by a two-component order parameter:

0 =
∫

d3�r
{
rρ2 + uρ4 + wρn(1 + cos nϕ) − σρ2 ∂ϕ

∂z
+ γ

[(
∂ρ

∂z

)2

+ ρ2

(
∂ϕ

∂z

)2]}
(3.1)

given in polar coordinates. Here the coefficients u and w denote respectively the contributions
of the isotropic and anisotropic interactions in the system, r is coefficient of the expression
containing the sum of the quadratic terms of the order parameter components, whereas σ and
γ are determined by the order of successive coefficients of the Lifshitz invariant and sums
of terms expressing inhomogeneities in the system being examined. The minimizing of the
functional (3.1) with respect to the given phase in the Dzyaloshinskii approximation (Izyumov
and Syromyatnikov 1990) leads to the well-known ordinary non-linear differential equation
for the mathematical pendulum, having the solution

ϕ(z) = π

n
+

4

n
arctan[e±n�q·(�z−�z0)] (3.2)

with z0 and q constants of integration. (In producing (3.2), a series of refinements of integration
constants are performed: the constant appearing at the first integration of the differential
equation of the mathematical pendulum is q2/2 − v, by use of which a new integration
constant κ2 = 4v/q2 is introduced. For our purposes it is sufficient to examine the limit
situation defined by κ ≈ 1.) The solution with the ‘+’ sign in the exponent corresponds to the
solitonic solution, while the second one, with the ‘−’ sign, can be treated as an antisolitonic
solution. In order to demonstrate the relevance of the line-group method to the static solitons
we rewrite the solution (3.2) in the form

e(n/2)�q·(�z−�z0) = tan

(
nϕ(�z)

4
− π

4

)
. (3.3)

When choosing the solitonic solution for the symmetry analysis, the application of the
antisolitonic one leads to a mirror image of the solitonic solution in the φ–z plane, reflecting
the mirror symmetry of soliton–antisoliton solutions. Let us apply a Seitz operator to both
sides of equation (3.3); then we have the relation

D̂(R|�vR) tan

(
nϕ(�z)

4
− π

4

)
= tan

(
nϕ((R|�vR)−1�z)

4
− π

4

)

= tan

(
nϕ((R−1|−R−1�vR)�z)

4
− π

4

)
(3.4)

for the right-hand side, where R denotes the orthogonal transformation coupled to the
elementary fractional translation of the given line group. According to the general rules
concerning application of the symmetry operators, the transformed function on the left side of
(3.3) can be written as

D̂(R|�vR)e(n/2)�q·(�z−�z0) ≡ D̂(R|�vR)e(n/2)(�q,�z−�z0) = e(n/2)(�q,(R|�vR)−1(�z−�z0))

= e(n/2)(�q,R−1(�z−�z0)−R−1 �vR) = e(n/2)(R�q,�z−�z0−�vR) (3.5)
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which becomes

D̂(R|�vR)e(n/2)(�q,�z−�z0) ≡ e(n/2)(�q,�z−�z0)e(n/2)(δ�q,�z−�z0)e−(n/2)(�q+δ�q,�vR) (3.6)

using the expression R�q = �q + δ�q, where δ�q describes the lattice modulation.
Assuming line-group invariance of the soliton lattice, we have that

e(n/2)(δ�q,�z−�z0) = e(n/2)(�q+δ�q,�vR). (3.7)

If we wish to explain the modulation of the ground-state lattice by elementary line-group
symmetry, by suitable choice of the integration constant �z0 = −�vR it is always possible to
express the modulation of the ‘primary’ unperturbed crystal structure as

(δ�q, �z) = (�q, �vR) (3.8)

i.e. by use of the elementary fractional translation �vR of a Seitz operator. The order of the screw
axis, corresponding to the subgroup of generalized translations describing the static soliton
lattice, can be determined very simply. With this aim, the periodicity of the tan function has
been obtained from the transformation realized by the symmetry operator corresponding to an
element (P |�vP ) of the subgroup of generalized translations:

D̂(P |�vP ) tan

[
n

4
ϕ(�z) − π

4

]
= tan

[
n

4
ϕ(P−1(�z − �vP )) − π

4

]
= tan

[
n

4
ϕ(�z) − π

4
+ kPπ

]
(3.9)

where kP denotes an integer. Performing a similar symmetry transformation by means of the
element (S|�vS) of the same subgroup of generalized translations, and taking into account the
assumed line-group invariance of the soliton structure, the difference of the arguments of the
transformed functions can be calculated as

ϕ(S−1(�z − �vS)) − ϕ(R−1(�z − �vR)) = (kS − kR)
4π

n
. (3.10)

This equality can be related to the phase-angle difference, which is obtained directly from the
expression for the phase function (1.1) for two arbitrary layers (perpendicular to the direction
of modulation) of the modulated structure:

ϕj − ϕi = π

2
q̄(j − i). (3.11)

As is seen, formula (3.11) which originates from the line-group theory is in accordance with
Bak’s theory, having an arbitrary accuracy. The relevance of the line-group technique can
be recognized in the case of non-linear excitations in magnetic chains, too. In the continuum
approximation, the equation of motion corresponds to systems which can be described (Delhaes
and Drillon 1987) in form of the sine–Gordon equation

∂2ϑ

∂z2
− 1

c2

∂2ϑ

∂t2
= m2 sin ϑ (3.12)

where ϑ = ϑ(z) denotes the angle between the magnetic field and the spin on the site with
coordinate z and m is the characteristic length with

m−1 = a

√
2JS

gµBH
.

Also, S is the maximal projection of a spin on the direction of the external magnetic field, a is
a constant and the characteristic velocity is

c = 2aS
√
AJ

h̄
.
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Similarly to the static solution (3.2) characteristic for the static solitons, the differential equation
(3.12) has a non-linear character and a solution describing collective excitations, reflecting
therefore dynamic solitons and meaning de facto moving domain walls in the same kink form
as in the static case:

ϑ(z, t) = 4 arctan exp[±γm(z − vt − z0)] (3.13)

where

γ =
√

1 − v2

c2
.

In this way, the solution functions (3.2) and (3.13) describing static (topological) and dynamic
solitons correspond to the simplest line-group symmetry transformations. It must nevertheless
be emphasized that, although the mathematical formulae for these two types of soliton are
formally analogous, their physical meanings are different. This difference and connection
between them can be revealed by the application of the Goldstone’s theorem (Goldstone 1961,
Goldstone et al 1962). The solution (3.13) represents a more general character for investigation,
as compared to the earlier procedures (Villain 1975, Davydov 1986), and so it has a wide scope
for describing dynamic properties of solitons. In order to perform this analysis in the next
section, we mention in advance here the important property of incommensurate structures that
they are continuously degenerate, i.e. the thermodynamic potential is the same for each value
of the phase angle.

4. Symmetry breaking and the cause of elementary excitations in incommensurate
systems

For the symmetry analysis of the possible types of elementary excitation in the incommensurate
crystals, first we point out the experimentally detectable continuous degeneracy of the ground
state of incommensurate systems, ensuring the applicability of the Goldstone theorem. Having
discussed the case of spontaneous symmetry breaking for continuously degenerate states and
using local conservation laws (Wagner 1966), we analyse the basic symmetry properties of
excitations existing in incommensurately modulated systems on the basis of the application
of line-group technique. It results in gapless excitations and a generalization of the theory of
symmetry breaking in discrete systems. According to this, the expression for the cross section
for x-ray and neutron scattering relevant for Umklapp processes can be given as

lim
�k→0

F(�k + �K) � 1

k2

(�k · �K/k)2T ρ̄2
�K

γ ′ (4.1)

where the quantity appearing in the argument of the function F(�k + �K) denotes the value of
the impulse transfer in the actual inelastic scattering process and the overline on the Fourier
coefficientρ �K means the average value in quantum statistics. The fundamental expression (4.1)
is based on Bogoliubov’s quasi-average 1/k2 theorem, which describes the long-wavelength
phonons and the gapless density excitations too, obeying the dispersion relation

lim
k→0

ω(�k + �K) ∝ k.

In the formula (4.1), γ ′ = γ /(2nm) where n denotes the particle-number density, m is the
mass of identical particles building up the whole system being examined, γ is a positive
constant quantity, T represents the values of the absolute temperature and �K is a vector from
the reciprocal lattice, which brings the vector �k, corresponding to the final state of the scattering
process, back to the first Brillouin zone. Because of this meaning, �K consists of an integer
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linear combination of generating elements (elementary vectors) of the reciprocal Bravais lattice.
Therefore, symmetry analysis of the elementary excitations in incommensurate systems can
be reduced to the calculation of the Fourier coefficients ρ �K . That is, it is obvious from the
Fourier expansion of the electron-density function

ρ(�r) =
∑

�k
ρ�ke

i�k·�r (4.2)

that its fundamental symmetry properties are also reflected in the Fourier coefficients in (4.2),
as was also shown for discrete Q1D systems (Mészáros et al 1997, Kirschner et al 1998). On
this supposition, it becomes possible to use equation (4.2) to describe elementary excitations
of incommensurate systems easily, and classification of the selection rules can be explicitly
incorporated into the expressions for the inelastic scattering cross section. According to the
basic principles of quantum mechanics, the possible transition from a generally degenerate
initial state {|i〉} of a system to the final degenerate one {|f 〉} is characterized by the symmetry
group G, its irrep D(i)(G) and the irrep D(f )(G). The selection rules can be determined by use
of the direct product of representations, if we do not take into account the eventual accidental
degeneracy and suppose that the irrep belonging to the perturbation-inducing transition isD(ν).
The transition becomes possible if the irrep corresponding to the final state is contained in the
product D(i) ⊗D(ν). By use of the Clebsch–Gordan coefficients C(iν|µ), this product can be
decomposed as follows:

D(i) ⊗ D(ν) =
∑
i

∑
ν

∑
µ

C(iν|µ)D(µ). (4.3)

In order to study the link between the Goldstone modes appearing in incommensurate systems
(i.e. phasons) and special elementary excitations relevant for symmetries of Q1D systems,
we here examine in detail selection rules which can be obtained using direct products of the
irreps of line groups. As far as we are aware, the first such calculations were performed in the
work of Damnjanović and Vujičić (1982), where the propagation of excitations along the main
axis of helical systems has been demonstrated, obeying the conservation laws of the quasi-
impulse and the quasi-angular momentum. For the sake of simplicity, in the present section
we will examine possible elementary excitations of non-magnetic incommensurate systems,
also having helical symmetry. Since the symmetry group of helical systems can be identified
as the simplest line group, Lnp = (n/r) ⊗ Ca

q , the selection rules that are suitable for such
systems can be derived by use of irreps of the group n/r of generalized translations and irreps
of the point group Ca

q . If the distance between nearest-neighbour scattering centres in a helical
system is ζ , then the irreps of the subgroup of generalized translations n/r are of the form

D(µ)(R|νR) ≡ kA((C
r
n|ν)t ) = eikζ k ∈

(
−π

ζ
,
π

ζ

]
(4.4)

where t is an integer and the index k denotes a de facto wave vector, whose possible values (in
accordance with the Born–Kármán cyclic boundary conditions for Q1D systems (Boz̆ović et al
1978, Boz̆ović and Vujičić 1981)) also denote the non-equivalent irreps of n/r . Since irreps
of the cyclic point groups are known, and irreps of the second constitutive symmetry group
of the helical system are one dimensional, the general form of the matrices, which represent
general elements of the full symmetry group Lnp, is

kAm((C
r
n|n)tCs

q) = eiktζ eimsa (4.5)

where eimsα = Am(Cs
q) denotes the one-dimensional matrix corresponding to the irrep of the

cyclic discrete rotational group and the selection rules can be presented as

Ak ≡ kf − ki = k +
2jπ

ζ
Am ≡ mf − mi = m + zq (4.6)
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where s, j and z are integers. This result originated from purely mathematical calculations
by Damnjanović and co-workers (Damnjanović et al 1983, Damnjanović and Božović 1984).
The first relation of (4.6) expresses the conservation of the quasi-impulse, while the second
one corresponds to the conservation of the quasi-angular momentum. It can be immediately
seen that these selection rules describe exactly the earlier-mentioned elementary excitations
called phasons. Therefore, these selection rules can be obtained on the basis of (4.3), as

�kf = �ki + �kv ± �K (4.7)

for Umklapp processes and the restrictions being satisfied simultaneously are

mf = mi + mv ± p (4.8)

following from the selection rules concerning quasi-angular momenta, where the values of
p must be taken from the second relation in (4.6). Relation (4.8) extends the mathematical
formalism of the x-ray and neutron scattering from modulated crystals in a remarkable manner,
since it represents selection rules which, as far as we are aware, have not been applied to
evaluate experimental data in such scattering experiments. By use of this last restriction,
we give completely new expressions for the relevant inelastic scattering cross sections and
energies of the elementary excitations in incommensurate systems. That is, the description
of the spontaneous symmetry breaking of continuous symmetries proposed by Wagner can be
directly connected to the selection rules (4.6). For this, it is only necessary to take �K appearing
in (4.1) from (4.7) and to require at the same time the validity of equation (4.8). In order to
illustrate the completeness of the line-group-technique-based theory of symmetry-breaking
phenomena in modulated systems, we recall the result published in the paper by Milošević
and Damnjanović (1993). According to this result, the Jahn–Teller theorem (Jahn and Teller
1937) remains valid for infinite Q1D systems too, as was demonstrated originally for finite 3D
molecules.

Finally, all partial results discussed in the present paper can be generalized by means of
the Goldstone theorem applied to the incommensurately modulated crystals as follows. Let
the high- and low-temperature symmetry groups (usually corresponding in turn to the higher-
and lower-symmetry states of the system) be denoted by GH and GL, respectively. According
to the general concept (Mermin 1979) for states with broken symmetry, GL is a subgroup of
GH (i.e. GL < GH ) and we have the following coset decomposition:

GH = GL + t2GL + · · · + tsGL s = |GH |
|GL| (4.9)

where the coset representatives ts are the symmetry elements lost during the phase transition
and the symmetries of propagating elementary excitations appearing after symmetry breaking,
whereas the symbol | · · · | denotes the order of the group. The general formula (4.9) can
be refined as follows. Following the method of Izyumov and Syromyatnikov (1990), in the
case of ordinary 3D crystals studied within SFS theory, the lost symmetry elements could be
point-group elements (giving orientational domains in the low-temperature phase), translations
(resulting similarly in antiphase domains), or products of such lost orthogonal and translational
symmetry elements. All of these cases can be directly described by use of (4.9). Also, the
relationship (4.9) is valid in the case of continuous groups and the coset representatives may
even form a convergent sequence of group elements (i.e. we can speak about a convergent
sequence of cosets, too). The existence of chirality domains in ‘helimagnetic’ crystal samples
was experimentally confirmed by the neutron topography technique (Baruchel 1994). Such
domains cannot be simply classified within framework of the SFS theory. Due to their above-
mentioned richer algebraic structure and the natural appearance of symmetry elements with
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non-crystallographic character, line groups are more suited for describing of the symmetry-
breaking phenomena in modulated crystals. Since relations (3.6)–(3.10) describe the simplest
possible soliton lattices only, whose domain structures are described using Seitz operators of
subgroups of generalized translations of relevant line groups, the generalization explained by
the following postulate is straightforward. In the case of breaking of continuous symmetry,
taking place at the appearance of phasons, the coset representatives ts are composed from
symmetry elements gc belonging to a continuous group and line-group elements corresponding
to symmetry operations describing mutual space and time relations of domains, i.e. we have
ts = gc(P |�t) with a symmetry transformation from a line group and denoted by the Coster
symbol (P |�t).

5. Formulae for the Debye–Waller factor in the case of incommensurate structures

In the following we apply the earlier-discussed mathematical formalism in order to calculate the
actual relations of Debye–Waller factors for the case of crystals modulated incommensurately.
According to the kinematic approximation of the theory of scattering of x-rays or neutrons
by crystals, the Debye–Waller factors describing the influence of lattice vibrations on the
diffracted intensities must be calculated according to the formula 〈ei�κ·�unj 〉, where �unj is the
displacement of the j th scattering centre in the nth unit cell and the symbol 〈· · ·〉 denotes the
quantum-statistical average. Then, the Debye–Waller factors enter generally the expressions
for the scattering cross section as e−〈(�κ·�unj )2〉 (Cowley 1975). The displacements of the atomic
scattering centres with respect to their positions in the absence of modulation are given by the
functions

�unj = �uj sin(�kmod · �Rn + ψj) (5.1)

where the wave vector �kmod describes the modulation and corresponds to the reciprocal-space
vector δ�q applied in section 3. Using the expansion

eiz sin α =
+∞∑

m=−∞
Jm(z)e

imα

the exponential factor necessary for calculation of the Debye–Waller factor can be written as

ei�κ·�unj =
m∑

m=−∞
Jm(�κ · �uj )eim(�kmod · �Rn+ψj ). (5.2)

Employing conventional formulae applied in diffraction physics, the intensities of the Bragg
reflections as well as their positions in the reciprocal space can be determined by the usual
Fourier-transformation procedure, which yields the result

Ir(�κ) = 8π3 N

Vc

|fm|2δ(�κ − �G + m�kmod)

(
fm =

ν∑
j=1

fjei�κ· �Rj Jm(�κ · �uj )eimψj

)
(5.3)

(Overhauser 1971, Giuliani and Overhauser 1981). Although structures with multiple
modulation also exist (Bruce and Cowley 1981, Izyumov and Syromyatnikov 1990), we limit
our investigation at present to the case of simple modulation. (It should be noted that multiply
modulated structures can also be treated by the line-group technique by using the concept of
the generalized semi-direct product of line groups (Kirschner et al 1997), and generalization
of the following calculations to the more complicated structures is straightforward.) Then, in
the approximation proposed by Overhauser, the Debye–Waller factor can be written as

e−Wj (m) =
〈
eimδψj

Jm[�κ · (�uj + δ�uj )]
Jm(�κ · �uj )

〉
. (5.4)
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If the fluctuations of the amplitude and phase satisfy

m2〈(δψj )
2〉 � 1 m2〈(�κ · δ�uj )2〉 � 1

the following approximate expression can be obtained for the Debye–Waller factors:

Wj(m) ≈ m2

2
〈(δψj )

2〉 − |m|
2

(|m| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

. (5.5)

Thus, the refinement of the scattering formalism concerning incommensurate structures can
be performed on the basis of line-group theory in order to simplify the formulae (5.4) and (5.5)
using the actual generating elements.

Table 1 contains the formulae describing actual Debye–Waller factors allowed by line-
group symmetries and derived according to the method just explained. In order to give
information concisely, we do not list all of the generating elements of the line groups—only
their isogonal point groups as well as the generating elements of the subgroups of generalized
translations, appearing in the richest algebraic factorizations. When subgroups of generalized
translations are generated by purely integer translations, the generating elements are also not
indicated.

According to these results, it is obvious that expression (5.5) obtained for Debye–Waller
factors for incommensurate structures may have at least three different forms for symmetry
reasons. They can be used directly in the algorithms necessary for calculations in the structure
determination of crystals required by diffraction experiments.

6. Conclusions

(1) The line-group method is able to make a clear distinction between Q1D and strictly
1D systems and therefore can be used to perform a further refinement of theoretical
descriptions of some basic phenomena in the physics of condensed matter related to the
properties of low-dimensional subsystems (such as the theory of Peierls transitions) via
symmetry analysis based on line-group methods. Comparison of the Fourier formalism
developed to meet the needs of the structural investigation of stereoregular polymers
by means of x-rays and the relevant formalism elaborated within the framework of
N -dimensional crystallography indicates that structure analysis of incommensurately
modulated crystals can be based on the line-group technique as well. In particular,
Debye–Waller factors can be simplified directly by using this method, which provides
their actual values. Also, the line-group technique gives a very simple theory for general
treatment of the symmetry-breaking phenomena in the incommensurately modulated
crystals. Application of the same technique may lead to a refined description and deeper
understanding of the already-described soliton-type elementary excitations in HTSs,
present according to the latest experiments. It has been shown that Q1D subsystems in
HTS materials can play an important role in the HTS mechanism. This new result demands
the re-examination of the concept of dynamic solitons in non-magnetic and/or magnetic
systems, and further investigation of striped phases may represent a useful research topic
in the future.

(2) As a continuation of this work, performing a generalization of the description of vibronic
interactions in condensed matter systems of different types is immediately possible. The
investigation of the similar effect of the Jahn–Teller phenomenon and Peierls instability in
the creation of superconductivity by the line-group method seems also to be reasonable.
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Table 1. Line groups, their generating elements and the relevant Debye–Waller factors.

Symbol Generating element Debye–Waller factor

1 Lqp Cq , (Cr
q |1/q)

(mq)2

2
〈(δψj )

2〉 − |mq|
2

(|mq| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

2 L(2n), Ln̄ S2n 2m2n2〈(δψj )
2〉 − |mn|(|2mn| − 1)

〈(�κ · δ�uj )2〉
(�κ · �uj )2

3 L(2n), Ln/m Cnh
(mn)2

2
〈(δψj )

2〉 − |mn|
2

(|mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

4 L(2n)n/m C2nh, (σv|1/2) 2m2n2〈(δψj )
2〉 − |mn|(|2mn| − 1)

〈(�κ · δ�uj )2〉
(�κ · �uj )2

5 Lqp22, Lqp2 Dq , (Cr
q |1/q)

(mq)2

2
〈(δψj )

2〉 − |mq|
2

(|mq| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

6 Lnmm,Lnm Cnv
(mn)2

2
〈(δψj )

2〉 − |mn|
2

(|mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

7 Lncc, Lnc Cnv, (σv|1/2)
(mn)2

2
〈(δψj )

2〉 − |mn|
2

(|mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

8 L(2n)nmc C2nv, (Cr
q |1/q) 2m2n2〈(δψj )

2〉 − |mn|(|2mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

9 L(2n)2m,Ln̄m Dnd, (σv|1/2)
(mn)2

2
〈(δψj )

2〉 − |mn|
2

(|mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

10 L(2n)2c, Ln̄c Dnd, (σv|1/2)
(mn)2

2
〈(δψj )

2〉 − |mn|
2

(|mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

11 Ln/mmm,L(2n)2m Dnh, (σv|1/2)
(mn)2

2
〈(δψj )

2〉 − |mn|
2

(|mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

12 Ln/mcc, L(2n)2c Dnh, (σv|1/2)
(mn)2

2
〈(δψj )

2〉 − |mn|
2

(|mn| − 1)
〈(�κ · δ�uj )2〉
(�κ · �uj )2

13 L(2n)n/mcm D2nh, (σv|1/2) 2m2n2〈(δψj )
2〉 − |mn|(|2mn| − 1)

〈(�κ · δ�uj )2〉
(�κ · �uj )2
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